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Reliability-Based Control Design for Uncertain Systems
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A robust control design methodology for systems with probabilistic parametric uncertainty is presented. Control
design is carried out by solving a reliability-based multiobjective optimization problem where the probability of vi-
olating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global
improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach
for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymp-
totic approximations, greatly reduces the numerical burden associated with complex probabilistic computations
without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with
state estimation are used to demonstrate the methodology.
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transformation from ¢ to p space

transfer function from z to y

time

uniform probability distribution

control input

weighting vector

arbitrary random variable dependent on p
system state

arbitrary random process dependent on p
system output

failure size penalizing function

support

admissible probability of failure

random variable used for stability
reference failure probability

cumulative distribution of a standard normal variable
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Subscripts

rms
X
x(h) =

root mean square value
random variable x
random process x (/)
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CHIEVING balance between stability and performance in the

presence of uncertainties is one of the fundamental challenges
faced by control engineers. Tradeoffs must be made to reach accept-
able levels of stability and performance with adequate robustness to
parameter uncertainty. These tradeoffs are explicitly linked to the
control engineer’s choice of uncertainty model as well as how that
model is exploited in the synthesis process. Usually, the assumed
uncertainty model has a profound impact on the performance ro-
bustness of the closed-loop system.

Several uncertainty models, such as norm-bounded perturbations,
interval analysis, fuzzy sets, and probabilistic methods,' =3 are typ-
ically used. The most commonly used robust control methods* are
 synthesis and H,. In these methods, uncertainty is modeled with
norm-bounded complex perturbations of arbitrary structure about a
nominal plant. This treatment is used primarily because it leads to
a tractable set of sufficient conditions for robust stability, making
the approach computationally efficient. These methods are based
on the most pessimistic value of performance among the possible
ones, usually referred to as worst case. This worst-case performance
is usually realized only by a single member of the uncertain model
set and by a particular input signal. No information is provided
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regarding the likelihood that this worst case will ever occur in prac-
tice. In addition, the intrinsic mathematical requirements of the ap-
proach usually lead to conservative models of uncertainty, overcon-
servative designs, and complicated compensators.

Probabilistic uncertainty not only defines a set of plants where
the actual dynamic system is assumed to reside but also associates
a weight, that is, the value of the probability density function, to
each member of the set. In contrast to conventional robust control
methods, this additional dimension allows the pursuit of robustly op-
timal solutions in the probabilistic sense. For instance, reliability-
based design searches for solutions that minimize the probability
of violating design requirements prescribed in terms of inequality
constraints. Hence, reliability-based control design searches for the
compensator that places as much probability as possible within the
region where the design requirements are satisfied. Notice that this
allows the search for the compensator with the best robustness for a
given control structure, for example, the most robust proportional—
integral—derivative (PID) controller, even though the violation of
some the design requirements for some of the plants in the uncer-
tainty set is unavoidable.

Synthesis approaches based on random searches>~7 and stochas-
tic gradient algorithms®® have been applied to probabilistic robust
control. In these studies, random sampling is the primary tool for
assessing and pursuing acceptable levels of robustness in the control
solution. On the other hand, asymptotic approximations'®~!2 for the
estimation of failure probabilities have been only used as a control
analysis tool. The works of Marrison and Stengel® and Wang and
Stengel,®”!3 and references cited therein are especially relevant to
this paper. Even though they lay down the basic framework for the
reliability control synthesis of real engineering problems, important
aspects of the formulation and of the solution method remain to be
explored and refined. This paper addresses some of those aspects.

The main contributions of this paper to the state of the art in the
subject are as follows:

1) Shapable failure domains are used within the reliability formu-
lation. This allows the concentration of the random outcome about
regions where an improved controlled performance is attained.

2) A unified framework is formulated where reliability metrics for
random variables and processes are integrated. Reliability metrics
for the random processes resulting from the propagation of parame-
ter uncertainty, such as probabilistic Bode plots and time responses,
have not been considered in the literature.

3) Deterministic sampling and asymptotic approximations are in-
tegrated in a hybrid approach. This approach a) reduces the computa-
tional complexity of the synthesis algorithm without compromising
the accuracy of the results, b) eliminates the random character of the
estimation, and c) eliminates the high computational demands asso-
ciated with the estimation of small failure probabilities via Monte
Carlo sampling. These improvements mitigate the high computa-
tional demands of existing design strategies.

This paper is organized as follows. In Sec. II, basic concepts
related to control and probabilistic uncertainty are presented. In
Sec. 111, the reliability metrics for random variables and processes
to be used throughout the paper are introduced. Realizations to sta-
bility, time, and frequency-dependent performance metrics are pro-
vided therein. In Sec. IV, the hybrid approach used for the estima-
tion of the reliability metrics introduced earlier is presented. The
reliability-based control synthesis procedure is presented in Sec. V,
including robust performance considerations and the synthesis al-
gorithm. Two examples are presented in Sec. VI, where a satellite’s
attitude control problem and the disturbance rejection in a flexible
beam are used to demonstrate the method. Finally, some conclusions
are stated in Sec. VIIL.

II. System Dynamics

Let p be a vector of random variables used to model the uncertain
parameters of the system. In this study, p is prescribed a priori by the
joint probability density function (PDF) f, (p) or equivalently by the
cumulative distribution function (CDF) F, (p). (In these expressions,
the subscript refers to the symbol used for the random variable,
whereas the value in parentheses refers to a particular realization.)

The set of values that p could take, called the support of p, will be
denoted as A ,.

Consider the probabilistic model M (p) of a linear time invariant
(LTI) system, where the dependence of the model on the uncertain
parameters could be nonlinear. Notice, however, that the develop-
ments presented herein do not require the system to be LTI. The
propagation of A, through M leads to a set of uncertain plant
models in which the physical system is assumed to reside. The prob-
ability of occurrence of a plant within this set is fully determined
by M and p. In a transfer function representation, we will refer to
G (p) as the uncertain plant and to K (k) as the compensator, where
k is the vector of design parameters to be determined. Alternatively,
a state-space realization of M (p) leads to

*=A@)x+Bpu+Fp): (e
y=Cp)x +D@p)u+Ep)y (€3]

where x is the state, u is the control, z is process noise, y is the
system output, and v is sensor noise. The noise signals are com-
monly modeled as delta-correlated Gaussian white noises satisfying
E[Z1=0and E[Z(1)ZT (t + 7)1 =88(7), where Z = [z7,v"]T and §
is a constant spectral density matrix. In what follows, the explicit
dependence on p is omitted and D is assumed to be zero.

As a result of uncertainty, important properties used in control
design do not hold due to the offset between the deterministic math-
ematical model and the actual dynamic system. The effects of para-
metric uncertainty on the separation principle are considered next.
For the full-state feedback law u = —Gx and a full-order observer
with gain L based on the expected plant E[M(p)] (or any other
deterministic plant such as M(E[p]) instead), the closed-loop dy-
namics is given by

¥ =A%+ Bz 3)
§=Ci+ Bz “)
A =
A — BG | BG
A — E[A] + (E[B] - B)G | (B — E[B])G + E[A] — LE[C]
+L(E[C] - O)
. [F| o
B =
[0 —LE]

where ¥ =[x",e"]" is the augmented state vector, e=x — % is
the estimation error, ¥ is the estimation of x, C=[C” | 07", and
E=[0" |ET]". The vector k is formed by the feedback gain G and
the observer gain L. Notice that the separation principle holds, that
is, A is upper triangular, if the deterministic plant used to generate the
observer matches exactly the actual dynamic system. Uncertainty
in the plant makes the separation principle unattainable. In addition,
the random closed-loop poles do not occur at the locations selected
for the full-state feedback, that is, poles of the A;; subsystem, nor
at the locations for the full-order observer, that is, poles of the A, »
subsystem.

III. Reliability-Based Metrics

The propagation of a fixed set of parameters of the plant through
conventional control analysis tools leads to set of scalar quantities,
for example, closed-loop poles, and a set of fields, for example,
step responses and Bode plots. The propagation of probabilistic
uncertainty through the same tools leads to random variables, for
example, random closed-loop poles, and random processes, for ex-
ample, the step responses become random processes parameterized
by time and the Bode plots become random processes parameterized
by frequency. In this section, we first introduce reliability metrics
for random variables and processes. Such metrics will be used to
quantify the violation of the design requirements. Specific realiza-
tions corresponding to stability, time, and frequency requirements
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are then provided. In general, we will use x and x (%) to denote a
random variable and a random process dependent on p through the
plant model. For the random process x (), h refers to an arbitrary
parameter such as time or frequency.

A. Random Variables

We start by introducing the concept of probability of failure. Let
X (p) be the random variable of interest and x < x be a design require-
ment. This event will be referred to as failure. The corresponding
failure set is given by F = {x | x € (—o00, x]}, where the failure enve-
lope x is a deterministic quantity prescribed in advance. The admis-
sible domain, namely, A= {x | x € (x, 00)}, is the complement of
the failure domain. The same type of discrimination can be done in
the parameter space p by using x (p). The function g (p, x) =x(p) —x,
called the limit state function, divides the parameter space in two
parts, the domain leading to A, that is, g(p, x) > 0, and the domain
leading to , that is, g(p, x) <0. Hence, F results from mapping the

set {pe A, | g(p, x) <0} through x (p). In this case, the probability
of failure Py is given by

P/'=P[x§)_f]=/ f;(x)dx=f Heydp O
x<x g=0

Similar expressions can be derived if the design requirement is

X > X. A reliability metric for x in which constraints from below
and above are present is given by

e ©) 27 () + 7 () 6)

where
r@) 2 Plx < x]=F,(x) )
F ) 2 Py > =1 -F.() (8)

Notice that r,(x) is equivalent to Eq. (5). We will refer to x and
X as the envelopes of the failure domain F={x |x € (—oo, x] U
[x, 00)}. Notice that the underbar and the overbar refer to the bound
from below and the bound from above of the admissible domain
A ={x|x e (x, X)}. This convention will be used for the reminder
of the paper. Notice that the mapping of the corresponding limit state
function through x (p) leads to the failure envelope(s). Hence, there

is a direct correspondence between F and g. Relevant information
is provided in Fig. 1.
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Fig. 1 Reliability metric for x.
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B. Random Processes

The random process x (&) can be considered as the parameter-
ization of a random variable by the deterministic quantity /. The
random process x (%) is specified by the set of CDFs!* F,, (x, h).
For instance, the system output y(¢) is prescribed by Fy,(y, t). The
evaluation of the process at a particular / value, for example, 4;,
leads to a random variable prescribed by F,(x) = F.u)(x, h;). In
general, the support and the percentiles of x (#) depend on 4.

In this context, a reliability metric for x (%) is cast as follows:

Fean ((h), X(h)) 2 1y () + Feg () ©)
where

ha

ha
L}(h)()_f(h))é/ Plx(h) < x(h)] dh=/ Fygy (x(h), h) dh

hy hy

(10
hy

hy
Ty (X (h)) £ / Plx(h) >x(h)]dh = / 1 —Fypy(x(h), h)dh

h3 h3

an

are the costs of violating the constraints x(h) <x(h) and
x(h) > x(h), respectively. The failure envelope functions, namely,
x(h) and x(h), are deterministic functions that delimit the fail-
ure domain F = {(x, h) | (x(h) <x(h)Vh € [hy, h, DU (x(h) > x(h)
Vh € [h3, h4])}. Notice that the admissible domain .A is bounded by
x(h) from below and by X (&) from above. Note that Eq. (9) is a nat-
ural extension of Eq. (6). Some of the pertinent metrics are provided
inFig. 2. In Fig. 2a, the 1, 25, 75, and 99 percentiles are shown along
with the linear failure envelopes x(#) and x (/). [Recall that the m
percentile, given by the x values satisfying F. (x, h) =m /100,
defines a line under which m% of the probability lies. These lines
allow us the visualize the & dependence of the PDF.] In the Fig. 2b,

the integrands of Egs. (10) and (11) corresponding to the configu-

ration in Fig. 2a are shown. Notice that if the process is contained

within the set \A the reliability metric 7, is zero, meaning that the
inequality constraints are satisfied for all parameter values in A ,.

Xa )
F 99 percentile
i 75 percentile
B #iel
h b, h
a)
l)

A — Integrand of 7,,),
wof{ T Inicgrand of 1,
075 |
0.50
0.25

ok
b)

Fig. 2 Reliability metric for x(h).
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C. Realizations
1. Robust Stability

An LTI system is robustly stable if all its poles are in the left-
hand side of the complex plane for all possible values of the random
parameters. A reliability assessment of stability is given by

P [ U(%[s,-] > 0)} —c

i=1

where s;, with i =1, 2, ... v, is a random pole. Robust stability is
attained if € = 0. Stability can also be cast via

A 2 max{R[s1], Rs2], ..., Rs,1) (12)

In terms of A, the probability of instability is given by 7, (0). Robust
stability is attained if 7, (0) = 0.

Several comments are now pertinent. Reaching robust stability
may not be feasible for the given support A, (even though it is
bounded) and the assumed control structure K (k). Notice also that
the acceptance of a small nonzero probability of instability could be
desirable from the performance point of view. For instance, when the
right low-probability tail of f; (1) is allowed to lie on the right-hand
side of the complex plane, significant enhancements in the perfor-
mance of the plants associated with the high probability portions of
the PDF can be attained. Rather than advocating for the acceptance
of the risk that this practice implies, we would like to highlight that
by allowing small values of €, the tradeoff between robustness and
performance can be quantified.

2. Time Domain

Quite frequently, performance requirements are prescribed in
terms of time-domain specifications. The propagation of f, (p) leads
to random processes for the time responses. Denote with x(¢) an
arbitrary random process with CDF F,,(x, t). Such a process is
parameterized by time ¢ and the compensator design variable k. The
dependence of x(¢) on k has been omitted to simplify the notation.
Reliability metrics for relevant processes can be cast using Eq. (9).
For instance, whereas settling time and overshoot requirements are
integrated using 7, [y(¢), y(¢)], the control saturation requirement
lu| < U leads to r,,(=U, U).

A reliability metric for assessing the effects of noise on the uncer-
tain plant is formulated next. The state covariance matrix, defined
as Q(t) = E[X(t)X (t)], is given by the solution to the Lyapunov
equation

Q=AQ+ QA" + BSB" (13)

subject to Q(0)=Qy. The output covariance, defined as
Y(t) = E[y(t)y" (¢)], reaches the steady-state rms value

s = lim diag[CQ(NCT |2 (14)

Notice that uncertainty in p makes y,,,s a random vector. If y, is
a component of ¥, a reliability metric that penalizes the violation
yrms > yrms IS glven by fy rms (yrms)~

3. Frequency Domain

The propagation of f,(p) to the frequency domain leads to ran-
dom processes of the form x(w), fully prescribed by Fy, (x, w).
Here, x (w) is any real frequency-dependent metric of the feedback
loop, for example, Bode magnitude. This random process is param-
eterized by the frequency w and the design variable k. A reliability
metric for x (@) 1S 1y [X (w), x(w)]. For instance, conventional con-
trol requirements!? for disturbance rejection, noise attenuation, and
reference tracking can be cast in terms of the loop transfer func-
tion. In terms of the loop gain, namely, q(w) =|GK]|, r (1) is
a metric for low-frequency requirements, whereas 7 ) [g (w)] with
q(w) having a proper rolloff is the metric for high-frequency re-
quirements.

IV. Numerical Estimation

In general, reliability metrics cannot be evaluated exactly because
they involve the evaluation of complicated integrals, usually multidi-
mensional, over complex domains. In this paper, reliability metrics
are estimated by using a hybrid approach that combines sampling
and asymptotic approximations. Such an approach is based on the
estimation of failure probabilities for the random variable. The es-
timation of failure probabilities for x via sampling is given by

n Z(x;
Py L €F) nef) (15)

i=1

where Z(-) is a binary indicator function that gives one if its ar-
gument is true and zero otherwise. The subscript in the preceding
expression refers to samples of the dependent random variable x.
An equivalent expression, where the limit state function is evaluated
at the sample values of p, can also be used. Usually, Monte Carlo
sampling (MCS)>~7-!3 is used to generate the required samples.

A. Hammersley Sequence Sampling

Hammersley sequence sampling (HSS) generates representative
deterministic samples of f,(p). The error of approximating an in-
tegral by a finite sample of the integrand, for example, Eq. (15)
instead of Eq. (5), depends on the uniformity of the points used to
generate the samples rather than on their randomness. This has mo-
tivated the development of deterministic sampling techniques such
as HSS, where the distribution of points is optimized. The » Ham-
mersley samples are generated by transforming the » Hammersley
points m;, i =1, 2, ...n, through the inverse CDF of the uncertain
parameter,

piZF;l(mi) (16)

The Hammersley points can be generated (see Ref. 16) easily. HSS
requires far fewer samples!” than conventional MCS for a given
confidence level. Improvements in the convergence rate of the esti-
mated first two-order moments by a factor of 3—100 (Ref. 18) have
been reported. In addition, if HSS is used to generate the samples
for Eq. (15), the estimated value of the failure probability is deter-
ministic. In contrast, MCS leads to a random value for P unless
an infinite number of samples is used. This is especially noticeable
if n is small. The random character of the estimation can only be
mitigated by increasing the number of samples, which incidentally
increases the computational demands of algorithms based on MCS.
Therefore, HSS not only leads to more accurate estimations than
MCS for a given number of samples but also eliminates the random
character of the results.

Figure 3 shows a comparison between HSS and MCS. In Fig. 3a,
n =200 points on the unit hypercube are shown. In Fig. 3b, the cor-
responding samples for f,(p) = f,(a) f,(b), where f,(a) =N (0, 1)
and f;,(b) = B(3, 2) with A, =[O0, 1] are displayed. Here, N and B
denote a Gaussian and a beta distribution. Substantial differences in
the uniformity of the points and in the clustering of the samples are
observed.

B. First-Order Reliability Method

The first-order reliability method (FORM)'! uses an asymptotic
approximation for the estimation of failure probabilities. In the pro-
cess, p is transformed into the standard normal uncorrelated space
q.Itp=T(q) = Fp‘1 [F,(@)], Eq. (5) is equivalent to

Py= f fq(q) dq
8(T(g) =0

FORM approximates the domain g[7'(¢q)] < 0, by a half-space fitted
to the true domain at the point of maximum probability density. This
approximation leads to

Pr~ o (=g an

where ¢*, called the most probable point (MPP), is given by
the solution to the constrained optimization problem ¢* = argi||q||,
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Fig. 3 Points and samples via MCS and HSS.

g(T(g*)) =0. In this expression, ® refers to the CDF of a stan-
dard normal random variable. Notice that the rotational symmetry
of f,(q) leads to the one-dimensional approximation in Eq. (17).
The MPP does not exist when the probability of failure is zero or
one because the equality constraint g (7'(¢*)) = 0 cannot be satisfied.
Even though FORM is extensively used in structural engineering, its
application to controls has been limited to stability'® analysis. The
use of FORM to estimate failure probabilities related to A might lead
to nonsmooth limit state functions. This occurs when crossings be-
tween any pair of limit state functions corresponding to the system
poles take place.

C. Hybrid Approach

Sampling-based techniques can readily be used to estimate prob-
abilities of failure using Eq. (15). However, high computational
demands in the evaluation of x; = x(p;) can preclude their practi-
cality, especially when P, ~ 0. Examples of this can be easily found.
(Wang and Stengel®’ make the approach computationally viable by
using a single random variable to model 28 uncertain parameters.
The same authors'® require 25,000 samples to determine a suffi-
ciently small 95% confidence interval.) On the other hand, methods
based on asymptotic approximations, such as FORM, provide good
approximations when P; is small. This is clear, because for failure
probabilities away from zero and one, the slow decrease in F,(q)
near the MPP and the geometrical difference between the true limit
state function and its linear approximation contribute a bigger error
to the FORM approximation.

In this paper, a hybrid approach that combines HSS and FORM
is used to estimate probabilities of failure. To identify the numerical
tool that best suits the task at hand, a coarse and computationally
efficient estimation of P is first generated by using HSS. Such
estimation is then compared with a reference, namely, the refer-
ence failure probability p, a user-defined value set in advance. The
comparison between the coarse estimate and p is used to determine
whether either FORM or HSS is used to generate the more accu-
rate estimation. Assume that two sets of Hammersley samples of
fp»(p) are available. One set has n; samples and the other one has 7,
samples, where 7, > n;. For a given failure domain J and a given
reference failure probability p, proceed as follows:

1) Estimate the P using Eq. (15) and the set of n; samples.

2) Recalculate P as follows. If the estimated value is greater than
p, use Eq. (15) with the set of n, samples. If the estimated value is
less than p, use FORM.

The refinement performed in step 2 might not always be neces-
sary. Situations in which this is the case are provided next. Because
reliability metrics for random processes are heavily dependent on
the larger values of the probabilities of failure that compose them
(Fig. 2b), refining the estimation of the relatively small values is
inconsequential. Furthermore, if the reliability metrics are used to
calculate the cost function of an optimization problem, more accu-
rate estimations are not needed when the assessment resulting from
using the coarse estimate of step 1 denotes a poor control design,
for example, 75 (0) > 0.

The described procedure applies to the random variable x. Ex-
tensions to random processes are easily attained. For the random
process x(h), generate e samples in the 4 domain as follows:

hi =10 — 1)/(e = D](tmax — Amin) + Amin
wherei =1,2, ..., e and [Ayn, fmax] 18 the interval of interest, for
example, hm, = hy and hy, = Ay in Eq. (10). Reliability metrics for
the e random variables x (4;), are estimated via the hybrid approach
and then used to form the integrands in Eqgs. (10) and (11). For the
sake of clarity, we will refer to the e samples in the # domain as the
e partitions.

V. Control Synthesis

A. Problem Formulation

The formulation of the control design problem from a reliabil-
ity perspective is as follows. For a given set of design require-
ments, plant model, compensator structure, and uncertainty model,
we would like to find the compensator parameters for which the re-
sulting probability of violating the controlled system requirements
is minimized. Such requirements combine stability and performance
specifications in time and frequency domains. Notice that this state-
ment refers to the excursion of the outcomes into the failure do-
mains. Performance improvements regarding the outcomes within
the admissible domains will also be considered. Such improvements
are attained by dynamically shaping the failure domains during the
minimization of the reliability cost metrics. This topic is considered
next.

B. Performance Improvements

The reliability metrics in Eqs. (6-9) are applied by using a fixed
failure set . In this form, a reliability analysis cannot assess the
system’s performance in the regions where the design requirements
are satisfied, that is, the union of the admissible domains A asso-
ciated with all of the design requirements. Because the portion of
the random outcome lying on the admissible domain .4 might end
up being substantially larger than the portion lying on the failure
domain F, a reliability-based approach with fixed failure envelopes
does not have control over the bulk portion of the PDF, which is the
portion that dictates the most likely overall performance.

The ideas behind the approach to be proposed will be introduced
with an example. Let x (k) be the stationary rms value of an error sig-
nal. Usually, we would like to find k such that x is as close as possible
to zero. Uncertainty in the plant makes x a random variable. Let x
be the failure envelope associated with a design requirement, that is,
F={x]|x €[x, 00)}. The minimization of 7, () leads to a reliability
optimal compensator. Suppose there exist multiple designs leading
to7, (x) =0. These designs, however, differ in how well the resulting
PDF of x spreads over the admissible domain A= {x | x € [0, X)}.
The concentration of f,(x) about zero is an indicator of the over-
all performance. For example, k; leads to 7, (x/2) =0 and k, leads
to 7, (X) = 0. Because none of these two designs violate the design
requirement x > x, a reliability analysis cannot establish that the
compensator with parameters k; has a better global performance
than the one that uses k.

When the reliability metrics are minimized and the failure
domain(s) are simultaneously enlarged, the whole random vari-
able/process can be concentrated about regions where an improved
system performance is achieved. This is attained by parameterizing
both the failure envelopes and a failure size penalizing function with
an additional design variable. This variable will be denoted as ¢. For
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the earlier rms example, the minimization of J =7,(c) + ¢, where
the design variable isd = [k, c] and ¢ € [0, x], leads to solutions that
integrate reliability and performance considerations on a single for-
mulation. Notice that the value of J for k; is less than the one for
k, if c € [x/2, X).

In general, we will refer to the augmented reliability metric
as the sum of a reliability metric from Sec. III and a penalizing
term. Augmented reliability metrics for the random variable x and
the random process x(h) take the form r,[x(c), X(c)] + y,(c) and
Teylx(h, €), X (h, €)1+ yea (c), respectively. The penalizing func-
tions y,(c¢) and y, @) (c) must be proportional to the size of the ad-
missible domain .A. In addition, they must be built such that the
minimization of the augmented metric does not lead to inadmissi-
ble solutions, for example, 7, =1 and y, =0. If r <€ is desired,
use a monotonically increasing function satisfying y € [0, €]. For
the rms example, the minimization of the augmented metric leads
tor, <eif y,(c) =€ec/x for c €[0, x].

C. Synthesis Procedure

A step-by-step procedure to reliability-based control synthesis is
presented next:

1) Determine the plant model and the control structure. First prin-
ciples and classical deterministic approaches to compensator design
can be used. Identify the set of parameters that have a strong im-
pact on the plant model. Use sensitivity information and engineering
judgment to select the set of uncertain parameters p. At this stage,
the parametric plant model, for example, G (p), and the control struc-
ture, for example, K (k), must be fully determined.

2) Generate the probabilistic parameter model f,(p). Use engi-
neering judgment and experimental data if available.

3) Determine the number of HSS samples 7; and n, to be used.
Follow the guidelines provided in Sec. IV.C. Use Eq. (16) to generate
the sample sets of f,(p) for both n; and n,.

4) Cast the violation of the design requirements in terms of re-
liability metrics as in Egs. (6-9). Recall that specific realizations
for stability, time, and frequency requirements were provided in
Sec. III.C. Use these metrics to compose the reliability cost vector
r. This step requires determining the failure domain J correspond-
ing to each component of r.

5) Determine which failure domains will remain fixed during
synthesis and which ones will be dynamically shaped. Let d be the
design variable. When the failure domains are fixed, d =k. When
failure domains are shapable, d = [k, ¢T]".

6) Build a penalizing function y (c¢) for each of the components
of r whose failure domain is not fixed. Follow the guidelines in
Sec. V.B. Update the components of the reliability cost vector r
by adding the penalizing functions and parameterizing the failure
envelopes.

7) Solve the multiobjective optimization problem

J= n%iin{rTNw} (18)

where N is a diagonal normalization matrix such that the compo-
nents of 7' N are between zero and one and w is composed of non-
negative weights. The matrix N is used to facilitate the weighting
of the components of r.

Each cost function evaluation used in the search for the opti-
mal reliability-based design d* requires a reliability analysis. This
analysis is done by calculating the reliability metrics contained in
r using the hybrid approach. This task requires forming the closed-
loop equations (4—14) and performing typical control studies such
as finding closed-loop poles, time responses, and Bode plots.

During optimization, the following procedure is suggested to fo-
cus most of the computational effort toward the assessment of better
designs. First, calculate the cost function using n; samples for e,
partitions. This implies that only the first step of the hybrid approach
is applied to all reliability metrics. This first assessment, denoted
as Aj, should be computationally efficient. If A; shows thatd is a
good design relative to the ones already evaluated by the optimizer,
perform the refined assessment A,. The assessment A, is carried out
by using e, partitions and a adjustable value for the reference failure

probability p. The adjustment of p is done to prevent inconsequen-
tial calculations as was mentioned in Sec. IV.C. If the particular
failure probability is to be estimated via HSS, use n, samples and
Eq. (15). If the particular failure probability is to be estimated via
FORM, use Eq. (17). If A indicates that d is not a good design, A,
is not carried out. This twofold analysis is applied to all designs the
optimizer evaluates in the search for d*.

Implementing the dual assessment described avoids the inconse-
quential refinement of the reliability metrics.

D. Optimization and Reliability

Because of the nature of the reliability metrics in r, the cost
function J(p,d) might not only have plateaus, that is, there
could exist a design d and a nonzero perturbation § such that
J(p,d)=1J(p,d+ 5),but might also have a discontinuous gradient.

The use of sampling in the estimation of probabilities makes
the cost function discontinuous at every point of the design space.
Let J(p,d) be an estimation of the actual cost J(p,d). For any
design d and regardless of the number of samples, there always
exists a perturbation § such that J (p, d) = J (p, d + 8). This situation
is aggravated, that is, bigger perturbations can be found, when a
smaller number of samples is used or when P is close to zero or
one.

The discontinuous nature of the estimated value of J must be
taken into account when selecting a numerical optimization method
to solve Eq. (18). In the examples to follow, the resulting nonconvex
noncontinuous optimization problem is first solved by using genetic
algorithms (GA) for a fixed number of generations. Because GA is
based on a random search, the twofold procedure described is partic-
ularly convenient. After the fixed number of generations is reached,
the GA solution is refined by using the Nelder Mead Simplex algo-
rithm, which is a local nongradient-based search method.

VI. Numerical Examples

The synthesis procedure of Sec. V.C is applied herein. A text-
book satellite attitude control problem is considered first. Then,
disturbance rejection for a flexible beam is presented. If p e R™,
the parameters used for A; are n; =75 m and e; =90. For A,, we
use 715 = 500 m and e, = 180. For comparison, the examples present
the solution to deterministic versions of the problems for which the
expected value of p is used. Such problems and the corresponding
solutions are referred to as the nominal ones.

A. Attitude Control

The synthesis procedure is mapped over this example:

1) Accurate satellite pointing in the presence of large thermal
gradients and mass losses for uncertain initial conditions is desired.
A simple rotational model of two bodies connected with a flexible
boom leads to

Jiby + b0 — 6) + k(6 — 0)=u
L6, + b6, — 6;) + k6, —6;) =0

where 6, and 6, are the deflection angles, J; and J, are moments
of inertia, & is the equivalent stiffness, and b =a./(k/10) is the
equivalent damping coefficient. The variable a is used to model
the changes in damping caused by thermal variations. We assume
that J, = 0.1 because mass losses only affect J;. The noncollocated
sensor—actuator pair resulting from using y =6, leads to the single
input/single output (SISO) transfer function for the plant:

Gp) = k + bs (19)
T NLst + b+ L)s? 4 () + Jo)ks?

Variations in the operating conditions and the ignorance of the
initial conditions are modeled using p=[J,, e, k, 0, 0]", where
0 =0,(0) =6,(0). The following output-feedback control structure
is assumed:

ki + ks + k3s? + kus®

K (k)=
( ) k5 +k(,S+k7S2+ksS3

(20)
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Table 1 Uncertainty model

Parameter PDF

Ji Aj1=[0.8,1] fr() =038, 1)
a A, =[0.03,0.2] fa(@)=B(0.3,0.2)
k A =[0.09,0.4] fe(k)=B(5,5)

0 Ag=[—1/2,7/2] fo(0) =B(5.2,5.2)
6 Ay =(—15,15) f3(6)=B(2.5,2.5)
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2) The joint PDF that describes the uncertainty in p is given by
the independent random variables listed in Table 1, where U and B
refer to uniform, normal, and beta distributions.

3) Generate n; =375 and n, =2500 samples of p via Eq. (16).

4) Performance requirements on the system’s closed-loop sta-
bility, settling time, over-shoot, and control usage and on the magni-
tude of the loop transfer function lead tor = [, (A), 1y (¥(1), (1)),
Futty (U 1), Ty ) (@(@)), Ty (§(@))]", where g(w) =|GK| is the
loop gain. The failure envelopes to be used are A =0; y(¢) =
—1.25H(t) + 2.27H(t — 70) for t € [0, 80], where H is the Heav-
iside function; y(¢) =1.25H(t) — 0.27H(t — 70) for t [0, 80];
u(t)=—0.5fort € [0, 25];u(t) = 0.5 forz € [0, 25]; g(w) =0.75/w
for w€[107°,0.2], and G(w)=1 for we[l, 10?]. These failure
domains lead to the normalization matrix N =diag{[1, 80, 25,
0.2—107%,10% - 1]}.

5) Fixed failure domains are assumed. This leads to
d: [k], kz, k3, k4, k5, k6, k7, kg]T.

6) There are no augmented reliability metrics in r because the
failure domains are fixed.

7) The solution of the optimization problem in Eq. (18) requires
calculating r for multiple control designs. Recall that for each de-
sign, the hybrid approach of Sec. V.C is used to generate the coarse
assessment A; and eventually the refined assessment A,. For A;, use
ny =375 samples, e; = 90 partitions, and Eq. (15). If A, is required,
use e, = 180 partitions, the reference failure probability o = 0.01,
and the results of A;. For the failure probabilities to be estimated
via HSS, use n, = 2500 samples. In this example, FORM is used to
calculate 7, (0) for p =0.01. Before the results from the described
procedure are presented, the deterministic problem based on the
expected value of the parameter is considered.

1. Nominal Compensator

A baseline compensator for the nominal plant is designed
by standard pole placement techniques such that large stabil-
ity margins are attained. This practice results in the nom-
inal compensator parameters k= 10°[0.0108, —0.3271, 0.1192,
0.0092, 1.8835, 2.1305, 2.2276, 0.9308]”. A reliability analysis of
the nominal compensator using the probabilistic uncertainty pre-
scribed by f,,(p) leads to r'N =10, 0.2485, 0.227, 7.08 x 1073, 0].
This vector indicates that the closed-loop system is robustly sta-
ble, that is, 75, (0) = 0, but the time responses are unsatisfactory. The
CDF of A as well as the time evolutions of the output and the control
signals are shown in Figs. 4-6. The sudden variation in the slope
of the CDF of Fig. 4 is the result of a change in the closed-loop
pole that determines A. The considerable disparity between A(E[p])
and EA(p) shows that the nominal problem is not a meaningful rep-
resentative of the probabilistic behavior. Figures 5 and 6 show the
time evolution of the random signals by indicating the 1, 10, 20,
30, 40, 50, 60, 70, 80, 90, and 99 percentiles. In Figs. 5 and 6, the
percentiles, the nominal fields, and the failure envelopes are shown.
Dotted lines are used to indicate the the failure envelopes. Note how
the PDFs expand, for example, Fig. 6 at 2.5 and 8 s, and contract,
for example, Fig. 6 at 4 and 16 s, in a oscillatory manner. This infor-
mation can be used to determine the time periods when the effects
of uncertainty are more noticeable.

2. Reliability-Based Compensator

The synthesis procedure given earlier leads to d* = 10°[0.0405,
0.1267,0.2422,0.0320, 0.5244, 1.0057,1.2263,0.6560]" and
rTN=[3.13 x 107*,0.0521, 0.0918, 1.33 x 10~*, 0] for which the
weighting vector w =[500, 1, 1, 1, 11" was used. A probabilistic
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analysis of this compensator leads to Figs. 7-10. Notice that in spite
of the increased variability of the dominant closed-loop poles re-
sulting from this compensator (A; in Fig. 7 about three times larger
than the one shown in Fig. 4), stability is compromised with only
3.13 x 10~ probability. Notice that a substantial improvement in
the performance is achieved by trading off a very small margin of
the probability of instability. This improvement can be seen after
comparing Figs. 5 and 6 with Figs. 8 and 9. Better robust stability
characteristics could be attained by increasing the weight in w for
the corresponding component of r. Recall that reaching zero prob-
ability of instability might be unfeasible. From Fig. 9, we see that
for all possible parameter values and initial conditions the process
u(t) stays between the +0.5 range with more than 0.8 probabil-
ity after 6 s. Figure 10 shows that uncertainty mostly affects the
damping and the location of the resonant frequency. Violations of
the low-frequency requirement are completely avoided. Overall, the
performance resulting from d* is substantially better than that re-
sulting from k.

During optimization, 157 random variables were used to evaluate
¢ for the coarse assessment .A4;. Such task takes 23.6 s when per-
formed on a Pentium III, 1795 MHz, with 512 MB of RAM. Notice
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Fig. 10 Bode plot of loop gain for reliability-based optimal
compensator.

that the CPU time associated with .4, depends on the initial condi-
tions used to find the MPPs. For this assessment, HSS was used for
628 random variables, and the hybrid approach was used for robust
stability. This task took 102 s.

B. Disturbance Rejection for a Flexible Beam

The second example will focus on a reliability-based disturbance
rejection solution for a flexible beam test article with both physical
and modal parameter uncertainties. The system (Fig. 11) consists
of a very flexible thin aluminum blade, approximately 1 m long,
attached at its base to a hub motor. The hub motor is the control
actuator for the system. At the tip of the beam, there is a reaction
wheel that serves as a disturbance generator. The test article has nine
sensors that may be used in any combination for either feedback
or performance output monitoring. The finite element method is
used to model this system by utilizing Euler—Bernoulli planar beam
elements. A complete description of the flexible beam test article!”
is available.

For this paper, we study a SISO model of the system in which the
input u is the hub motor torque and the measured output y is the tip
velocity. The tip reaction wheel disturbance is modeled by passing
a Gaussian white noise process through a second-order linear low-
pass filter, with parameters ¢ =0.8 and w, =200m rad/s. The first
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Table 2 Uncertainty model

Parameter PDF

E Ap =10'0[5.226,7.839] fe(E)=B(5,5)
) A, =[2280, 3420] fo(p)=B(3,3)
& Ag, =10.08,0.12] fe1(51) =B(2,2)
& Ag, =[0.0252,0.0378] fer(82)=B(2,2)
& Ag, =10.02,0.03] fe3(53)=B(2,2)
& Ag, =[0.0304, 0.0456] fea(E2) =B(2,2)
&s Ag, =[0.02, 0.03] fes(&s) =B(2,2)

Experimental Test Article

Fig. 11 Flexible beam test article.

five modes of the elastic structure are used to build a state-space real-
ization of the plant. This, in addition to the disturbance model leads
toaopen-loop system wherex € R'>,u € R, andy € R. The uncertain
parameters are the Young’s modulus E (pascal), the density p (kilo-
grams per cubic meter) and the damping ratios of the retained vi-
bration modes. This setleads top =[E, p, &, &, &, &4, £5]7, whose
components are assumed independent. The corresponding PDFs are
given in Table 2. The mean value of the parameters E[p] is set to
coincide with the parameters in the finite element model. These
mean values were chosen to match experimental data, whereas
the supports of the distributions were set according to reasonable
ranges of variation. The shapes of the PDFs were arbitrarily set.
Performance requirements on stability and the output rms lead to
r=[7,(0), 7y, (Jrms)]T. Two control design problems are consid-
ered in this example, output feedback and full-state feedback with
a full-order observer.

1. Output Feedback

First, a third-order compensator with the same structure as
Eq. (20) is considered. A baseline compensator is designed such
that the tip velocity rms for the nominal plant is minimized.
This results in y,, =0.025 m/s and k=[—0.0052, —0.2589,
—16.1462, —5.007, 0.0004, 0.0009, 0.2519, 0.0598]". A reliabil-
ity analysis of the nominal compensator for the uncertainty model
in Table 2 leads to 7, (0) = 0.068 and 7, (0.05) = 0.010.

For the reliability-based design, a shapable failure domain
for the rms component of r is assumed. This leads to the
cost vector = [7,(0), 7'y () + yyrmS]T, where ¢ €[0, 0.05] and
Yyms = €. The corresponding design variable is d =[k”, ¢]”, and
the normalization matrix is N =diag{[1, 1.05]}. The weighting
vector w =[20, 1]7 leads to d* =[—0.0072, —0.3506, —22.2811,
0.0145, 0.0006, 0.0019, 0.3761, 2.8 x 1078, 0.0305]", 7#,(0)=0,
and 7ys(0.0305) =4.33 x 1073. A probabilistic analysis of d*
leads to Figs. 12 and 13. Figure 12 shows that the whole random
variable .y is moved toward zero, by virtue of the nonfixed failure
envelope. Figure 13 shows Bode magnitude plots of the disturbance
to output transfer function, namely, T, Notice that differences in
the low-frequency portion of the diagram have a bigger impact on
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Fig. 13 Bode diagrams of T, for output feedback.

the rms value. In Fig. 13, Bode magnitude plots for the nominal
compensator and the reliability optimal compensator are shown.
The 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99 percentiles and the
nominal fields are superimposed.

2. Full-State Feedback and Full-Order Estimation

In this example, the control structure is determined by full-state
feedback and a full-order observer. Hence, the feedback gain G,
the observer gain L, and the rms failure envelope ¢ are the de-
sign variables. Recall that the separation principle does not hold
due to uncertainty in the plant. The resulting closed-loop dynamics
is given by Eqgs. (3) and (4). Notice that although the observer is
deterministic, all of the closed-loop poles are random. As before,
a baseline compensator for the nominal plant is first designed by
minimizing the rms value, which results in y;,, =0.011 m/s. When
Yms = 0.05 m/s is used, this compensator leads to 7, (0) = 0.232 and
yrms (0.05) = 0.002.

The reliability-based synthesis approach for the same setup
used in the output feedback example leads to 7,(0)=0 and
Fyrms (0.0139) = 3.6 x 1073, Because of the large number of ele-
ments in d*, only ¢=0.0139 m/s is provided. The probabilistic
analysis of d* leads to Figs. 14 and 15. Compared with Fig. 12,
Fig. 14 shows considerably more variability in the Bode magnitude
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plot as well as a significant reduction in the damping of the first
mode. Because there is no conservatism in the selection of the nom-
inal plant, that is, G (E[p]) is not the most difficult plant to control,
the optimal deterministic values for the nominal plant do not have
to bound the resulting supports, for example, values in A, may
be less than yu,, =0.011 m/s.

Notice that even though d* leads to a robustly stable closed-loop
system in Eq. (3), the full-state feedback subsystem A;; and the
full-order observer subsystem A, , have a nonzero probability of
instability. This indicates that the separation principle artificially
reduces the design space. Whereas robust stability was achieved in
both output feedback and full-state feedback solutions, the latter led
to a better performance.

VII. Conclusions

This paper proposes a reliability-based control synthesis method
for systems with probabilistic uncertainty. Control synthesis is per-
formed by solving a multiobjective optimization problem in which
the probability of violating stability and performance requirements

is minimized, while the failure domains are simultaneously en-
larged. Including dynamically shapable failure domains leads to im-
provements in the global controlled system performance that could
not be pursued by a reliability formulation with fixed-failure do-
mains. In addition, the integrated use of asymptotic approximations
and deterministic sampling in a hybrid approach proved to con-
siderably relax the high computational demands of the synthesis
algorithm. Examples of the attitude control of a simple satellite
model and of the disturbance rejection of a flexible beam are used
to demonstrate the method.
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